

Regenerative Energie- und Montagesysteme GmbH

Solarthermal

Installation Manual In-roof Collector RK 215

Dear Customer,

thank you for deciding to install a REM RK-215 collector on your roof. Please read this installation manual carefully before installing the collector. Please pay attention to the applicable technical regulations.

1	Technical datas	3
2	Safety instructions	3
3	Required aids and tools	3
4	Installation	4
	General Notes for the installing of the collectors Possibilities of combination Installation of collectors Component overview Pastening the flashing Positioning of the sensor	
4.5	Connection- and Linking-Set	19
5	Electrical Installation and Equipotential Bonding	21
6	Operational Notes	21
7	Troubleshooting	23
8	Acceptance Report	26

Safety instructions / Required aids and tools

1 Technical datas

gross collector Area: 2,15 m² aperture area: 1,9 m²

dimensions (w x h x d): 1070 x 2010 x 90 mm

weight: 40 kg

collector frame: aluminium silver anodized

glas: highly transparent solar safety glas 4 mm

connections: 2 x Cu 18 mm

2 Safety instructions

This manual ist written for professionals, who are familiar with the installation of solarthermal collectors.

.

- The accident prevention regulations for working on roofs must be followed...
- Where required a safety harness or safety scaffolding has to be used.
- The system must not be filled with liquid during a strong sunshine on the collector surface. If the filling is done during sunshine, the collectors have to be covered.
- If there ist he dange of freezing, the collectors may not be filled or pressure tested with water. In this case there has to be used the original REM heat transfer fluid.

3 Required aids and tools

To install the collectors, the following materials are required:

- piece of chalk, chalk line
- 2 ladders
- appropriate rope, ca. 8-10 m lonng, lashing straps
- water-level
- drillig maschine and drilling set
- drillset (Torx T25) für Torx-screws
- socket spanner with ratchet, sockets and extension (size 17 and 13 mm)
- open-end wrench (size 17 mm)
- adjustable open-end wrench (up to size 30 mm) or open-end wrench size 27

$\mathsf{m}\mathsf{m}$

- Screwdrivers (size 3 4)
- angle grinder with cutting disk for stone
- saw with blades for wood- and metal
- Hexagonal spanner 6 mm

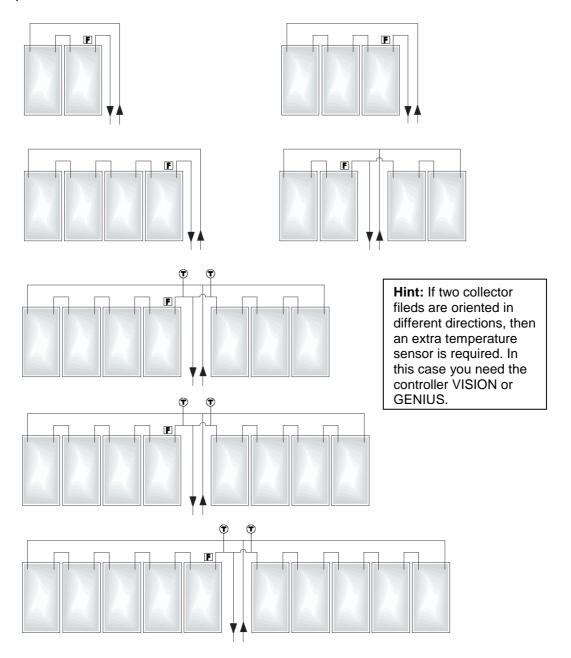
4 Installation

The inroof mounting of the collectors is possible on roofs with an inclination of min. 20°. To be shure that everythinh ist tight, the mounting must be done by a professional.

4.1 General Notes for the installing of the collectors

- If the collectors have to be stored before installation, they have to be stored dry and protected from direct sunshine.
- In case of transporting a collector in vertical position, the collecto has to be secured against sliding out of the carton box.

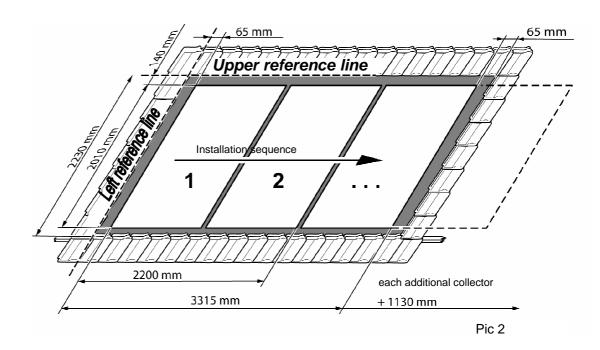
- The perfect condition of the roof construction has to be checked before beginning of the installation (static loads).
- The collectors shoulbe faced to south if possible.


Possibilities of combination

4.2 Possibilities of combination

In picture 1 are shown some possibilities of combination. 6 may be connected maximal in series. Multiple groups of serial connected collectors must be connected in parallel fields, according to the Tichelmann principle.

If collector groups with different numbers of collectors are connected, there must be used a temperature resistant string regulator (min up to 150° C) to adjust the pressure loss of the fields.



F: collector-sensor T: string regulator

4.3 Installation of collectors

1 Mark the position of the collectors using the drawingings below

Left reference line = next tile edges in the left of the collectors.

Upper reference line = next tile edges over the collectors.

The alignment of collectors has to be tone according these 2 reference lines.

- 2 Remove tiles according to the area of the collector-field.
- Uncover the roof surface in accordance with the collector field plus working area. Remove at least one additional row of roofing plates each at the top, at the bottom, on the left and on the right.

Dimensions

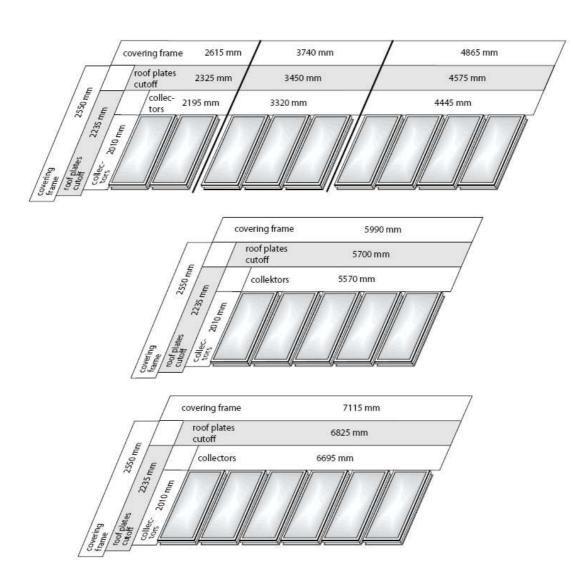
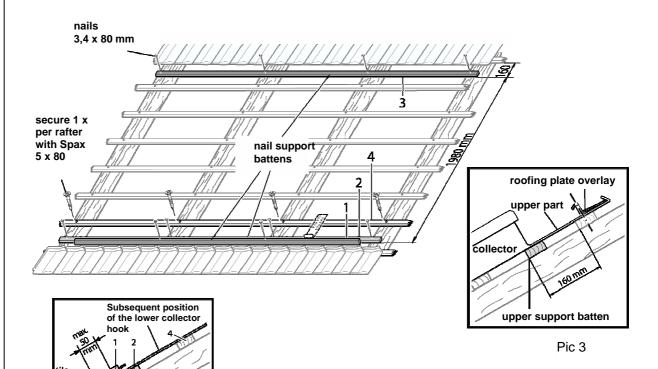



Tabelle 1

Fit support battens (1) to (3) to fasten the collectors as shown in picture 3.

These support battens have to be sufficiently nailed in place. The first roof batten (4) above the two lower support battens (1) and (2) must also be secured with 5 x 80 mm spaxscrews.

Tip for mounting the lower support battens

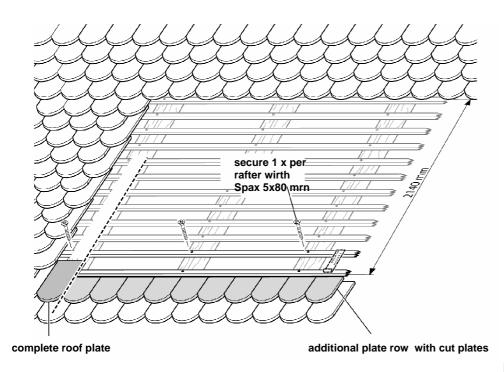
Vertical support batten (1) may not extend past the width ofther collector. The length of the batten must be adjusted forthe total width of the collector (Pic 2).

The upper edge of the vertical batten (1) must be the same height as the upper edge of the roofing plates.

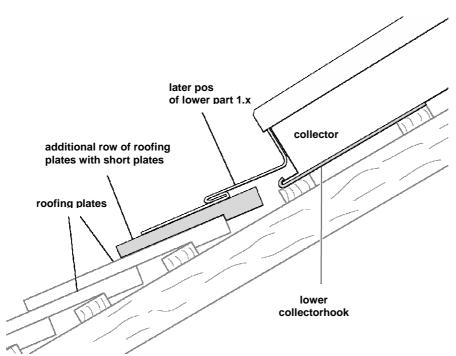
The length of supportbatten (2) must be adjusted to match the substructure (distance between the rafters).

Conditional step:

use a support batten above the roofing plate if necessary,


gapmust be less than 50 mm

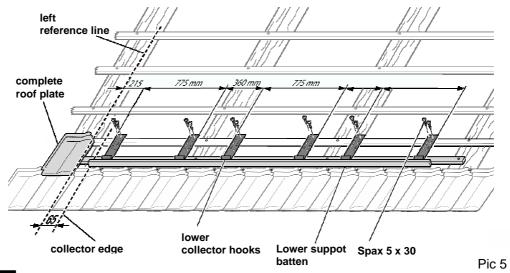
Depending on the type of roofingplate, it may be necessary to grind or knock off the plate folds at the upper plate edge of the lower roofing plate row. This may be necessary for a proper fixing of the lower part led sheets.



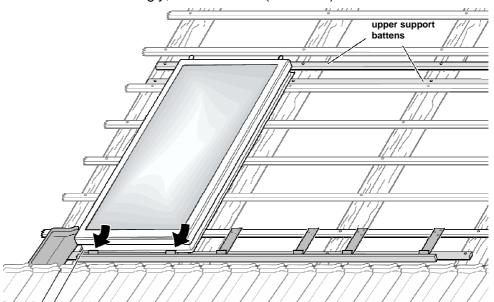
Tips for roofs with plain tiles

The support battens (1) to (3), as shown in Pic 3 are not required. Mount an additional plate row on the lower side of the collector field as shown in Pic 4. Apart from that Pic 3 is valid.

Pic 4

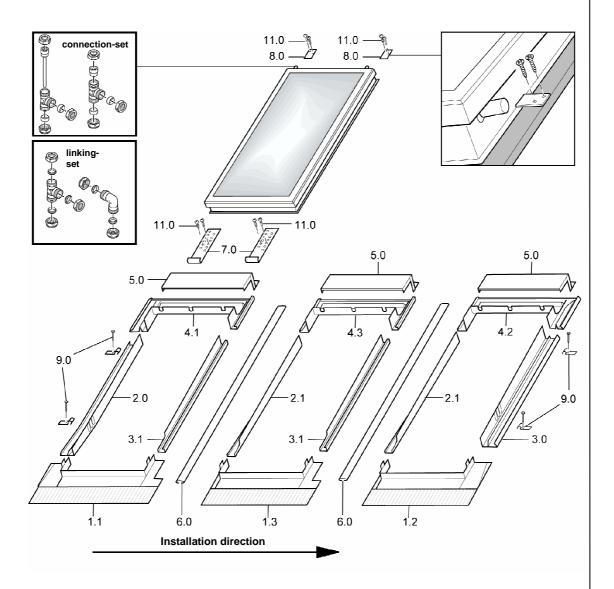


4 Tarnsportation of collektors on the roof.


To avoid damages of the collector during the transport to the roof, unpack the collector not until it is on the roof.

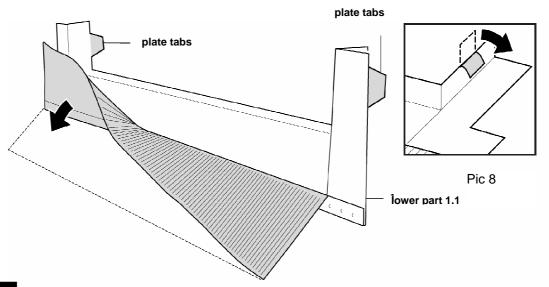
5 Mounting of the lower collector hooks.

Positioning of the first collector.


Put the first collector in position and fit it in the two left collector mounts. Align the collector accordingly, but don't fix it (see Pic 6).

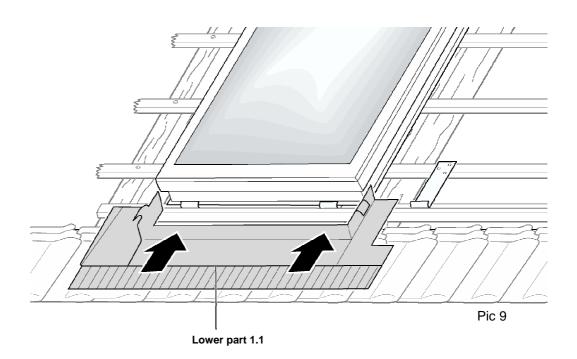
7 fit all other collectors but don't secure them

4.3.1 Component overview



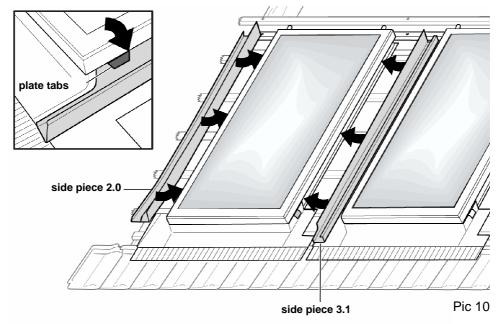
4.3.2 Fastening the flashing

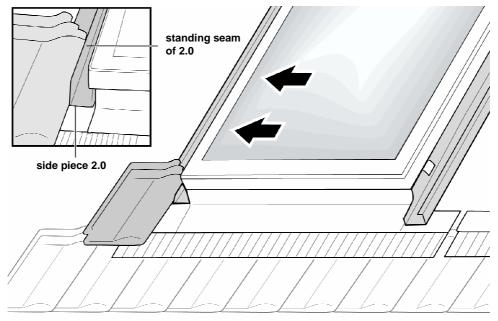
8 Prepare the lower parts 1.x for installation with the collectors.


To do so, fold the corrugated lead plate open about 180°, bend the plate tabs over (see small illustration)

9 Attach all lower parts 1.x.

Tip: The left lower part must be attached first to ensure that the lower parts 1.xoverlap. Then lay the next plate over it (to do so, lift the collector slightly).

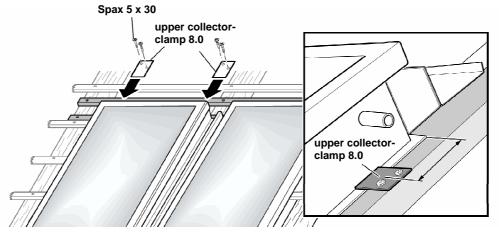

The lead plate covering must overlay the lower tile by at least 100 mm.


Put side pieces 2.0 and 3.1 in position.

clamp them in place using the plate tabs of lower part 1.1, Pic 10.

Position a test roofing plate to the left of the first collector.

Place the collector with the left side piece 2.0 flush against the roofing plate and align it correctly.

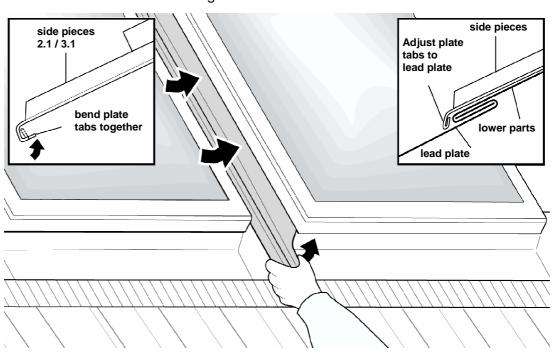


Pic 11

- 14 -

12 Fixing the left collector.

Install the left collector first using upper collector clamp 8.0 (Pic 12). The other collectors are mounted later after all side pieces are inserted

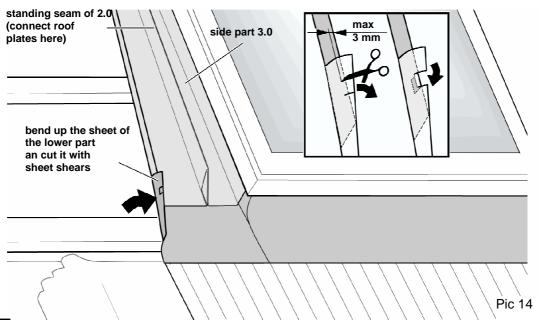


Pic 12

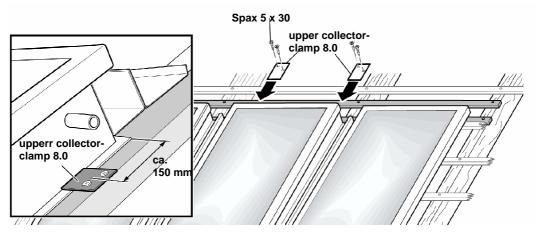
13 Insert the remaining side pieces 1.1/3.1/3.0.

Bend all platetabs together and match them to the corresponding lowerparts 1.x, (see Pic 13).

Push the collectors until the edges meet



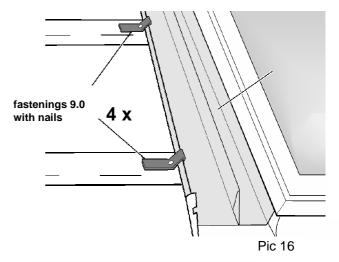
Bend the edge folds of lower parts 1.1 (left) and 1.2(right) around side pieces 2.0 (left) and 3.0 (right).


That isimportant for a watertight transition to the roofing plates.

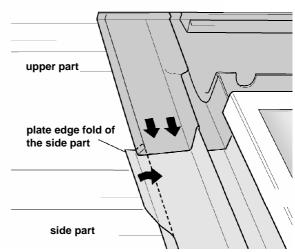
Tip: Cut into the edge fold twice with sheet shears. The edge of the side pieces may only be cut in 3 mm. Bend the resulting plate tab inwards. This additionally protects the lower part from sliding (see Pic 14).

15 Fixing of collectors

Now fix the remaining collectors with the upper collector clamps 8.0, (see Pic 15.

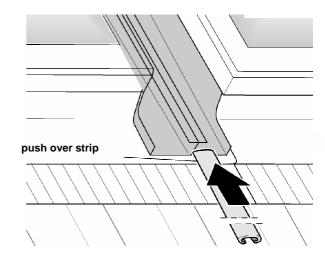

Pic 15

- 16 -


Fastenings 9.0 fixing.

Attach the side fastenings. Clamp the fastenings in side pieces 2.0 and 3.0 and secure the fastenings with the nails 9.0 on the counter battens.

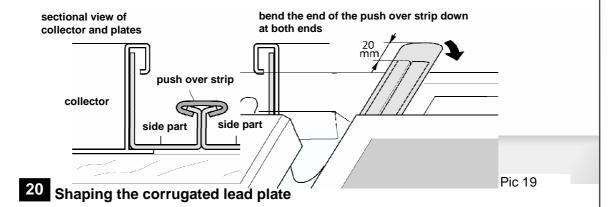
17 Slide up upper parts 4.x


Blechrandfalz der Seitenteile 2.0 und 3.0 um die Oberteile schließen, Bild 17

Pic 17

18 Fixing push over strips

Attach the die push-over strips and leave about 20 mm protruding at the bottom



Pic 18

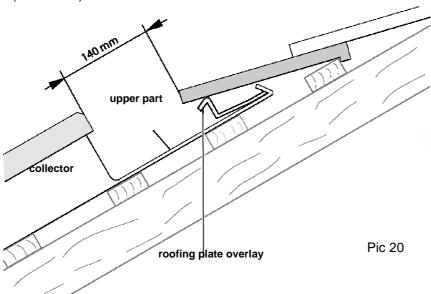
Überstand umbiegen.

bend the end of the push over strip down at both ends (see Pic 19).

Shape the corrugated lead platefrom 1.1/1.3 or 1.2 to the contour of the roof tile. Thebest way to do this is by pressing against them with theball of your hand. Do not use any pointed tools for this.

Recommendation:

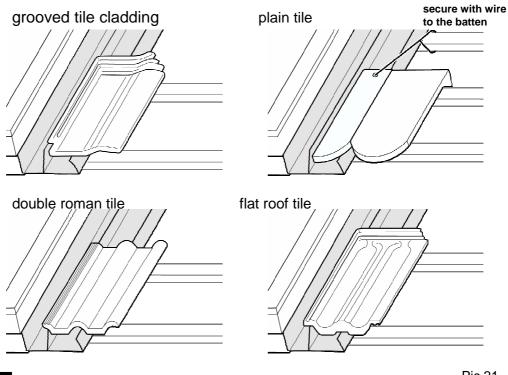
Stick the long lead plate apron downusing silicone to prevent it being lifted by wind.


Closing the in-roof frame.

Cut the roofing plates to size if necessary (see Pic 21).

Adjusting of the roof plates on the right side has to be done on the roof.

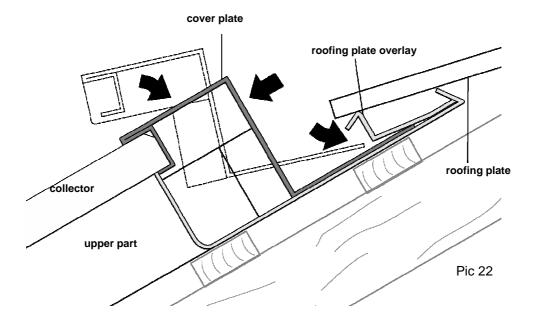
According to type of roof plates it can be necessary, to mount additional lead plates (not included in the delivery contents).


Important: The distance of the first row of roofing plates to the collector above the collectors must be 140mm. If the distance is smaller, there is a risk of blockage by leaves etc. (see Pic 20).

- 18 -

Examples:

22 Piping of collectors

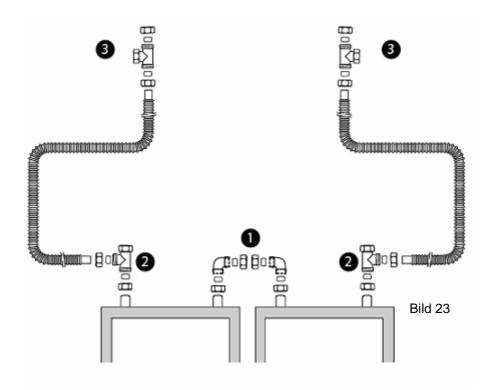

Pic 21

at this position follows the piping of the collectors, Hints see chapter 4.6

23 Installing the cover plates 5.0

After installing the piping, initialfilling and bleeding, insert cover plates 5.0 below the upper parts 4.1, 4.3 and 4.2.

To do so, insert the sheetlugs of cover plate 5.0 under the roofing plate overlay and press downwards over the collector frame.


Sensor / Solar circle connection

4.4 Positioning of the sensor

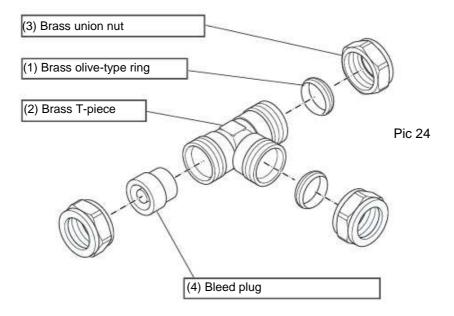
- In row installations, the sensormust be located in the last collector in the direction of flow.
- The collector with the sensor must not be shaded.
- Cut ca. 5 mm of the rubber-grommet, stick the cylinder of the sensor until the fence and pull the rubeer-grommet over the sensor pocket.
- The sensor cable should be laid inside a protection pipe on the roof.

4.5 Connection- and Linking-Set

- Connection-Set

 (1 T-piece has a sensor pocket inside)
- 2: Linking Set
- 3: Linking-Set for stainless steel flexhose set

Installation instructions for the connection- and linking-set


These sets are suitable for copper pipes according to DIN EN 1057 or DIN 1754 with 1 mm walls..

The following simple rules must be observed to ensure rapid and safe connection:

- 1. Cut the pipe at right angles to its axis using a rotating pipe cutter. The pipe end must be round (correct if necessary) and cleanly deburred.
- 2. Loosen the union nut and check that the olive-type ring sits properly in the fitting.
- 3. Now slide the pipe fully into the fitting. The pipe must sit in the fitting without any lateral tension.
- 4. Now hand-tighten the union nut and then tighten it one turn further using an appropriate open-end spanner.
- 5. Fill the system with REM heat transfer fluid and perform a leak-test.

The bleed plug (4) can also be mounted on the stub of the T-piece: Loosen the union nut (3) and swap the olive-type ring (1) with the bleed plug. Now hand-tighten the union nut and then tighten it one turn further using an appropriate open-end spanner.

Note: Original REM components must always be used, also when replacing parts. Otherwise all guarantees are null and void.

Electrical Installation / Operational Notes

Table of flow rates depending of the size of the collector field (RK 215 in a system with a solar-storage) :

Number of collectors	2	3	4	5	6
Flow rate [I/min]	2,0	3,0	4,0	5,0	6,0

5 Electrical Installation and Equipotential Bonding

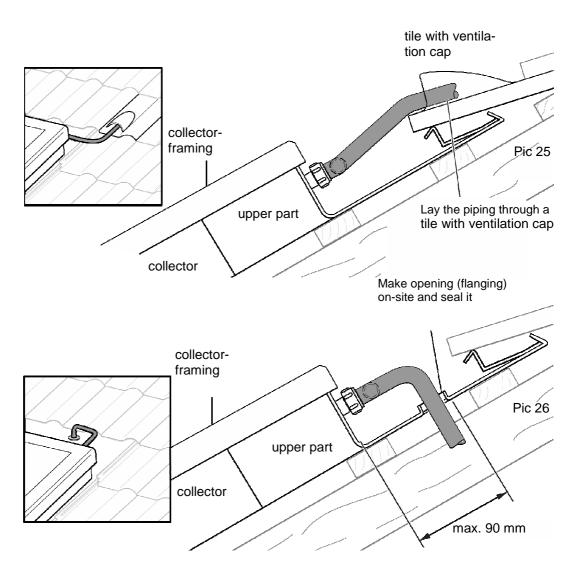
Regarding general protection against accidental electrical contact

The collectors must be electrically connected to each other and the solar piping (supply and return) must be connected with the building equipotential bonding by the shortest possible route. Metal parts with a large surface area must always be connected to the existing building lightning conductor: Please be sure to observe the local regulations and follow the installation instructions relating to the solar controller. The work may only be performed by qualified, authorised personnel.

6 Operational Notes

Depending on the system configuration, collector overheating (e.g. through standstill) can cause solar heating fluid to escape through the pressure-relief valve. This should not be channelled into the sewers, but rather collected for refilling and, where possible, fed back into the system. The heat transfer fluid is not poisonous.

Safety-valve, expansion vessel and heat transfer fluid have to be checked regularly


The heat transfer fluid must be tested for frost resistance using a special frost resistance tester, when first installed and at regular intervals thereafter. A frost resistance of -27°C \pm 3 °C must be tested and documented.

In the case of brown colouration, cloudiness or odour creation, the fluid must be replaced.

Damage caused by overheating or frost damage is not covered by the manufacturer warranty.

Warning: Overdimensioning and system standstill during periods of high solar irradiation can lead to overheating and creation of steam in the system.

To avoid system overheating, appropriate protection measures, such as recooling or cooling using heat dissipation devices, must be considered.

7 Troubleshooting

Symptom	Description	Explanation	Solution
System delivers no	Controller settings		Check controller
output	incorrect		settings
	Controller has no	Lightning	Please contact qua-
	function	strike/Malfunction	lified personnel
	Air in the system	There is no	Set hand-bleeding
		deaerator at the	system. Empty and
		highest point in the system Bleeding	flush the system according to
		process not	installation
	No flow through the	Puffinpienot	Obtroctiona
	system	connected/Faulty	operation of the
		controller	solar controller's
		Pump is blocked	Outputthe pump and
		,	move it
			mechanically
System delivers too	Flow rate of the		Set the correct flow
little output	solar system too		rate according to
	high or too low		the pump assembly
			installation
	Heat transfer fluid	Large system idle	instructions Check heat transfer
	damaged	Large system idle time	fluid and change if
	damaged	unie	necessary
	The solar system	Storage tank sensor	Position sensor in
	has only short	set too high,	the lowest part of
	operating times	storage tank sensor	the storage tank
		put in T-piece	possible Position
		connection	sensor directly on
			the storage tank if
	0' 1"	B 10 1 1	possible
	Circulation pump	Resulting in strong	Reduce operating
	has long operating times	and permanent mixture and	time to a minimum, eitherby timer or
	unies	circulation losses	sensor
	Supply and return	on ediation lococo	Checking all con-
	mistakenly		nections
	interchanged		
	Mount collector with		Always position the
	sensor facing down		sensor on top
	The heat cannot be		Storage tank
	transferred		maintenance,
			Carefully empty and
	Low solar irradiance		flush the system No error has occur-
	LOW SOIAI IITAUIAITCE		red
System frequently	Position of the		Position sensor
switches itself on	collector sensor		according to the
and off	incorrect		installation
			instructions
	Gravity circulation	Gravity brakes out	Check position of
		of service	the gravity brakes
Solar piping heats	Gravity circulation		Check all pipes for

Symptom	Description	Explanation	Solution
up during standstill			gravity circulation
Storage tank cool in the morning	Pipes poorly insulated	Gravity circulation	Check isolation of all pipes and of the gravity brakes
	Unexpected decrease of performance (e. g. heating boiler)		Check all pipes for gravity circulation
	Storage tank insulati- on damaged		Check storage tank insulation
Automatic deaerator not tight	Automatic deaerator faulty	Seals not temperatu- re-resistant	Exchange with hand- bleeding systems and do not use any automatic deaerators
The temperature of the tapped drinking water is too high	No domestic hot water mixer installed		Install domestic hot water mixer
Storage tank heats up too much	Overdimensioning of the system		During the night, the amount of heat generated is dissipated over the system or by using heat dissipation
	Consumption on the consumer side insufficient		Makeesure to have adequate heat dissipation
Screw connections become untight	Screw connections tightened when hot		Retighten all screw connections when cold
Storage tank corrosive in a short time	Missing anode main- tenance		Change anodes
	Highly aggressive water		Use adequate anodes
The collector shows condensation	Temporary condensa- tion	Formation of dew because of excessive humidity	As long as the condensation disappears when the sun is shining on the system no measures need to be taken
	Permanent condensation	Accumulation of hu- midity	Please contact quali- fied personnel
The system has become untight during the winter	Frost damage	Frost protection insuf- ficient	Check heat transfer fluid, conduct pressure tests on collector/system
		The heat transfer fluid was diluted with water	Check heat transfer fluid, conduct pressure tests on collector/system
When switched off, pressure drop occurs at minimum pressure	System filled when there was solar irradiation System has lost fluid No initial pressure on		Fill system when switched off or when the collectors are covered
	membrane expansion tank (membrane expansion tank faulty)		Change tank
Empty system	Expansion tank faulty		Change tank
	Expansion tank out of service		Check tank
	Capacity of expansion tank insufficient		Change tank or add another membrane

- 25 -

Troubleshooting

Symptom	Description	Explanation	Solution
			expansion tank
	Amount of heat transfer fluid in the system too high	When heated up to the maximum temperature for the first time, the surplus fluid is pressed out	No further steps are necessary if this has only occurred once

8 Acceptance Repo	ort	Date:
Building project :		
Address :		
Company performing the work_	In	staller:
Solar energy system configuration	on (pieces): RK 215	-
Collector manufacturer number	:	
Installation type:	☐ On-roof ☐ Roof-integra	ted Freestanding
Collector orientation:	□West □Southwest □Sou	uth
	Roof slope:(')	
Collectors are shaded (%):	yes no	
Storage tank type/make:		Contents (I:) _
Storage tank installed on :	Compan	y :
Simple pipe length from collecto	or to storage tank (m) :	
Pipe type :	Ø:	
Electrical connections according	g to VDE regulations	
Specialist company performing		
	Date	Stamp/Signatur
Solar controller :	Type :	
Controller settings adjusted according yes □ no ΔT: K	_	
Controller placed in operation ad	ccording to the operating instruc	tions on

Acceptance Report

Location / Date:	Stamp / Sign	
Note: The system (controller) must not be switched off.		
Frost protection	□ yes	□ no
Setting of the flow (target value): (l/h)		
Insulation material make :	_ Insulation thickness : _	mm
Piping insulated :	□ yes	□ no
Pumping set to level:		
System filled with heat transfer fluid and free of air :	□ yes	□ no
System pressure (cold) (bar) provided :	□ yes	□ no
Leak test of screwed and soldered connections, as wel cut-off devices :	I as □ yes	□ no
Solar circuit pressurised to 10 bar on a cold system	\square yes	□ no
Safety valve blow-off pipe mounted on exit funnel :		
Drinking water safety valve installedbar		
Storage tank cut-off device open:	□ yes	□ no
Drinking water storage tank filled and bled :	\square yes	□ no
Domestic hot water mixer installed :	\square yes	□ no
☐ Permanent anode with extend	•	ected and
☐ Magnesium anode	Permanent anode with power source	external
Corrosion protection anode installed in storage tank:		

01/2008 Technische Änderungen vorbehalten